Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina
نویسندگان
چکیده
During mammalian neurogenesis, progenitor cells can divide with the mitotic spindle oriented parallel or perpendicular to the surface of the neuroepithelium. Perpendicular divisions are more likely to be asymmetric and generate one progenitor and one neuronal precursor. Whether the orientation of the mitotic spindle actually determines their asymmetric outcome is unclear. Here, we characterize a mammalian homolog of Inscuteable (mInsc), a key regulator of spindle orientation in Drosophila. mInsc is expressed temporally and spatially in a manner that suggests a role in orienting the mitotic spindle in the developing nervous system. Using retroviral RNAi in rat retinal explants, we show that downregulation of mInsc inhibits vertical divisions. This results in enhanced proliferation, consistent with a higher frequency of symmetric divisions generating two proliferating cells. Our results suggest that the orientation of neural progenitor divisions is important for cell fate specification in the retina and determines their symmetric or asymmetric outcome.
منابع مشابه
Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway
During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Ins...
متن کاملMouse Inscuteable Induces Apical-Basal Spindle Orientation to Facilitate Intermediate Progenitor Generation in the Developing Neocortex
Neurons in the mammalian neocortex arise from asymmetric divisions of progenitors residing in the ventricular zone. While in most progenitor divisions, the mitotic spindle is parallel to the ventricular surface, some progenitors reorient the spindle and divide in oblique orientations. Here, we use conditional deletion and overexpression of mouse Inscuteable (mInsc) to analyze the relevance of s...
متن کاملStrabismus regulates asymmetric cell divisions and cell fate determination in the mouse brain
The planar cell polarity (PCP) pathway organizes the cytoskeleton and polarizes cells within embryonic tissue. We investigate the relationship between PCP signaling and cell fate determination during asymmetric division of neural progenitors (NPs) in mouse embryos. The cortex of Lp/Lp (Loop-tail) mice deficient in the essential PCP mediator Vangl2, homologue of Drosophila melanogaster Strabismu...
متن کاملinscuteable mRNA Localization Is Dynein-Dependent and Regulates Apicobasal Polarity and Spindle Length in Drosophila Neuroblasts
Drosophila neuroblasts undergo asymmetric divisions along the apicobasal axis to produce two daughter cells of unequal size and different developmental fate. Inscuteable (Insc) protein functions as part of an apically localized complex to coordinate orientation of the mitotic spindle and basal sorting of cell fate determinants. insc mRNA transcripts also localize apically in neuroblasts, yet th...
متن کاملDrosophila E-Cadherin Regulates the Orientation of Asymmetric Cell Division in the Sensory Organ Lineage
BACKGROUND Generation of cell-fate diversity in Metazoan depends in part on asymmetric cell divisions in which cell-fate determinants are asymmetrically distributed in the mother cell and unequally partitioned between daughter cells. The polarization of the mother cell is a prerequisite to the unequal segregation of cell-fate determinants. In the Drosophila bristle lineage, two distinct mechani...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 48 شماره
صفحات -
تاریخ انتشار 2005